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Abstract—In this paper the problem of an elastic plate containing a planar surface crack and
subjected to antisymmetric loading conditions is considered. The problem is formulated by using
Reissner's plate theory. A line spring model is developed for a part-through crack under mixed mode
conditions and mode [1 and [1I compliance functions are determined. A modification of the integral
equations resulting from the Reissner theory is necessary for this fermulation to recover the plane
strain solution for thin plates. It is shown that, as in three-dimensional problems, mode If and 111
deformations remain coupled whereas mode [ can be separated. The problem is solved and mode
[ and [11 stress intensity factors are given for a plate containing a surface crack which is subjected to
three separate antisymmetric external loads, namely in-plane shear, twisting moment, and transverse
shear. Results for in-pline shear and transverse shear are compired with existing numerical solutions.
The results presented also include the effect of Poisson’s ratio.

{. INTRODUCTION

Generally, surface cracks growing under cyclic loading and/or corrosive environment arc
oricnted in such a way that the stress state along the crack front is purely mode [. Largely
for this rcason and partly because of the complexity of the related analysis, the vast majority
of existing solutions of the surface crack problem in a plate are restricted to mode [ loading
conditions. For the analyst one highly discouraging aspect of the problem is that under
mixed mode loading conditions the crack usuilly does not remain coplanar as it grows.
However, it is possible to envision structural components subjected to fully reversed cyclic
antisymmetric loading (particularly in the presence of a sustained or cyclic mode [ loading
of some significant magnitude) in which, because of symmetry, the surface crack may
initiate and grow in a planar fashion. Under cyclic torsion for example, despite the local
saw-tooth type irregularitics, macroscopically the growing crack in shafts is known to
remain gencrally coplanar (Tschegg et al., 1983).

Since in three-dimensional crack problems mode II and [T deformations are always
coupled, the only fracture mechanics parameter that can logically be used in these problems
to correlate the subcritical crack growth results would be the strain energy release rate.
Thus, in order to model the subcritical crack growth process and to analyze the resuits
under mixed mode loading conditions, the solution of the corresponding crack problem
would be needed. The main interest in this paper is in structural components that can locally
be represented by a “plate™, contain a planar surface crack, and are subjected to general
loading conditions. It is further assumed that the plane of the crack is perpendicular to the
plate. Given the general part-through crack problem for a plate, the mode | component
can always be separated and treated independently by simply considering the membrane
and bending resultants Ny, and M, as the only applied loads (Fig. 1). In this study,
thercfore, only the effect of the antisymmetric external loads Ny,, M, and ¥, resulting in
mode [T and ] deformations around the crack will be considered (Fig. 1).

The surface crack problem shown in Fig. | is a three-dimensional problem which does
not readily lend itself to analytical treatment. The existing elasticity solutions of the problem
have, therefore, been based largely on the finite element, boundary element, or alternating
methods. Quite understandably the mode I surface crack problem has been studied rather
extensively [see the recent review articles by Atluri and Nishioka (1986) and by Newman
and Raju (1986) for a nearly complete list of references], whereas there are only a few
solutions dealing with the mixed mode problem (Smith and Sorensen, 1974 ; Simon ef al.,
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Fig. 1. Notation for a surface crack in a plate under antisymmetric loading.

1987; Nikishkov and Atluri, 1987). The problem can, however, be treated analytically
within the confines of a plate theory by approximating the net ligament in the plate by a
line spring (Rice and Levy, 1972 sce also the review article by Erdogan, 1986, for refer-
ences). Most of the studics that are based on the line spring model deal with the surface
crack problem under mode I loading conditions only. Li and Rice (1983) were the first to
apply the line spring principle to the antisymmetric surface cruck problem. Their model
was a simplificd version of the mode T model ; it applied only to long cracks and made usc
of the classical plate theory which cannot properly handle twisting and transverse shear
separately. Later, Desvaux (1985) applied the line spring idea to a plate that was modeled
by the finitc element package ABAQUS which can include transverse shear deformation.
In his work he found a problem with the twisting component of the model. Among other
difficulties the model, without some correction, will not recover the plane strain solution
for long cracks. This behavior should be an inherent part of the model. To overcome this
problem they ignored the line spring compliance coefficient that causes coupling between
in-plane shear and twisting moment. This coefficient is analogous to the mode [ coefficient
which couples tension to bending. We believe it should remain in the line spring equations.
This assumption leads to inaccurate stress intensity factors as compared to the solutions
given by Sorensen and Smith (1977) for the most important antisymmetric loading condition
of in-plane shear. In this paper the line spring model will be developed for a plate containing
a surface crack and subjected to antisymmetric external loads. The mode! is then adjusted
such that the plane strain solution will be predicted for long cracks. The mode Il and HI
stress intensity factors will then be computed for various loading conditions. Comparisons
with existing solutions will be made,

2. LINE SPRING MODEL FOR ANTISYMMETRIC DEFORMATIONS

Consider a plate containing a through crack of length 2a which is subjected to anti-
symmectric applied loads having the resultants N,,, M, and V, (Fig. 1). Assume that the
plate problem for the given applied loads has been solved in the absence of the crack and
that the problem is thus reduced to a perturbation problem in which the crack surface
tractions are the only non-zero external loads. Let uy, u; and u; be the components of the
displacement vector and B, and f, those of the rotation on the neutral plane x; = 0 (Fig.
1). Define the antisymmetric complementary “stress™ and “displacement” quantities on the
linex, =0,x;=0, —00 < x; <o by (Fig. 1)
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Ni:(0.x3) = Fi(x;), M:(0,x;) = Fa(x2), Vi(0,x7) = Fi(xy), Q)
u(+0,x2) = g((x2), B2(+0,x;) = ga2(x2).  u3(+0,x;) = gy(x3). 2

By using the displacements as the unknown functions and Reissner’s transverse shear theory
in the formulation of plate bending (Reissner, 1945, 1947) for the through crack, the integral
equations may be obtained as follows [see Kaya and Erdogan (1987) for the discussion of
integral equations with strongly singular kernels and Joseph and Erdogan (1987) for the
details of the derivations] :

L 1* gt l
_amd‘z = Eh = Fiolx2), —a<x;<aq, 3)
k" g:(r2) L
54—1: ‘am i+ — In _,,]_z kz,(«)g,(tz)df’ = hz on(\‘ ) —a<x;<a, (4)
T g 1 12(1 +v)
n %—a (t:"‘.t:):d:z‘*- 2“ —.altz k};(")gj(! )dtZ - SEh F30(x2)’ ‘a < xz < a’ (5)

where F,y (i = 1, 2, 3) are the crack surface tractions that are equal and opposite to the
stress resultants obtained from the solution of the uncracked problem [see eqn (1)] and the
kernels &k, (i, j = 2, 3) are given by

5 48 4
ky(2) = l2h(l+v)[ 1 +2K,o(jz]) — 4K, (I |)"'“Kz(f |)]
o S/ [- . i
kyy(z) = PR )[ —2Ky(lz D+( )Kz({-l)],
?
10] 8
ks (z) = \"/““” [:i +:K0(|z|)—<z+ ;)Kz(lﬂ)],

10 2
k() = 7 [Kz(fl’i) -5 +Ko(t:t>],

NI

z = T(’z —-X2). (6a—)

In (6) K, and K, are the modificd Bessel functions of the second kind. For small values of
z the kernels &, (i, j = 2, 3) have the following asymptotic form:

ka(z) ~ (n (1=1/2) + (e = 1/4) +(2/2)* In (121/2) +- - ],

3
12h(1 +v)

_5J/10
k() ~ [ty (G2 10 GE1/2) + /2= 18) + QU312 In (=472 4+ )
knn®) ~ Y (= G2 10 (4D = /)= ) = Q1312 In (11720 ),
h
10
k(@) ~ 3 l=In(=02)= (11290 = B/2/2)* In (21/2)++ )

2= (t—x2), (7a-€)
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where y, = 0.577215665 is Euler’s constant. From (7) it is seen that the functions k,; (i,
J = 2.3) that appear in (3)—(5) are square integrable in the closed interval [ —-aq, 4] and can
therefore be treated as Fredholm kernels.

In formulating the three-dimensional surface crack problem shown in Fig. | by the
“line spring” model, first the problem is rendered two-dimensional by suppression of the
x; coordinate through the use of a “plate theory™. Then the unknown stresses a,,(0. x3, x;)
(j =2, 3). along the net ligament [x;, =0, —a<x,<a, (—h/2) <x;< (h{2-L)] are
represented by their statically equivalent resultants Ny,(x;), M,.(x,) and V' (x,) (Fig. 1).
These resultants which act on the crack along the neutralaxis x; = 0, —a<x;<a. x; =0
are assumed to replace the effect of the net ligament and tend to constrain crack surface
displacements. Thus, the part-through crack problem may now be formulated approxi-
mately by using the through crack formulation given in (3)-(5) under the assumption that
the unknown resultants, which are equivalent to ¢,;(0. x.. x;) (J = 2. 3). act as additional
external loading. The integral equations of the problem may then be obtained by modifying
(3)—(5) as follows:

1 [« 3 A, o
2 %Z [(T:?T “‘"’*fz(-)]yf(tz) dr,

= BlFo(x)+F{x)] ((=123). (~a<x;<a), 8

where the constants A, B, (i = 1. 2, 3) are given in (3)-(5). the kernels &, (i, j= 1, 2, 3)
by (6) withk,, =0 =4k, (m=23) and F, (i = I, 2, 3) arc defined by

R L
{”g (.Vz) = N;g(}cz) = f m:(().xg.x‘) (L\f),
hi2
hi2 -

Fa(xp) = Myy(xy) = J

au((). Xl.x_\).\'; dx;,
K2
hi2-L

Fy(xy) = Vi(xy) = j a5(0, X2, x;) dxy. (9a—c)

Clearly the net ligament resultants £, F, and £, are not independent of the crack
surface displacements and rotations g, g: and g;. Thus the formulation of the crack
problem is completed by establishing the relutionship between Fiand g, (i = 1, 2, 3). To
do this the energy G available for fracture at a location along the crack front is expressed
in two different ways, namely as the crack closure energy expressed in terms of the stress
intensity factors and as the product of load-load point displacement (Rice and Levy, 1972
Rice, 1972). If U and V respectively refer to the work done by the external loads and the
strain encrgy, for the antisymmetric problem under consideration & can be expressed as

d P U ] PSR BPS
;-»(U—-— V)=G= 5 ( i+ I—v;\’)' (10)

where k.(x;) and k,(x,) are the mode Il and 1T stress intensity factors along the crack
front defined by

ka(xy) = lim 20150, x5, x3),

U
ki(x,) = Ii“rr‘t) 2r612(0, xa. x1), r=hH2—L—~x;. (ila.b)
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Fig. 2. Notation for a plate with an edge crack under two-dimensional antisymmetric loading.

Referring now to Fig. 2, locally for a change dL in the crack length L, the change in
U and V under constant load may be cxpressed as

3
dU =Y F,dJ,. (12

iw |

LA I 1. 13
=3 [iﬁ(0‘+d6.)- 5’7"‘] =3 ¥ Fds, (13)

[E3}

where d4; is the variation in the relative crack surface displacement §; (Fig. 2). For the
antisymmetric problem considered from (2) it may be seen that

9i(x2) = 2g/(x2) (i=1.23). (149

From (12) and (13) the incremental energy available for fracture corresponding to crack
growth of an amount dL is found to be

)
dU-V) = Z%F}dé,. (15)
=}
Considering
25,
P — ‘: 2
dé; 6LdL (i=123), (16)

from (15) and (10) it then follows that
3

d l _&éd;
gz(U~V)= Z“ﬁﬁgz (17

i}

and
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> 189, n(l—vz)(2 1 2)
gjjﬂgz--—g—-—- ki+ ki) (18)

A further assumption made in developing the line spring model is that the stress
intensity factors &, and &, at a location x, along the crack front may be related to the
resultants F,(x;) (i = 1, 2, 3) through the solution of the plane edge crack problem shown
in Fig. 2. Assume that this solution is known and that the stress intensity factors are given
by (see the next section)

ky(x2) = Jhay(x2) f5(8),
ky(x2) = Vhlo((x) [1(©) +02(x) f2(D]. & = L(xy)/h, (19a,b)

where the shape functions f,, f; and f; are assumed to be known and ¢, ¢, and o, are
stress amplitudes in the plate defined by (Fig. 2)

1
oi(x2) = ;F| (x2),

6
oa(x;) = FFz(Xz)‘

3
ay(x;) = 2—,;F,(x2), —a<x;<a. (20a-c)

In the plate theory used o, is lincar and o, is parabolic in the thickness coordinate x;.
From (14) and (18)-(20) it follows that

Qg b g, 2 g, n(l-—vz)[l

6 oL T—v

RS A LA b iy (fof+20':0'2f1f2+6§f§)+6§f§]- @n

If we now define the matrices

gy g f% Nifz 0
=30t (g=3Womt (=" s 1 0 |,
o5 2/3)95 E- 1o o a-wa
(22a-c)
from (21) it is seen that
v 2 (g} = (VU e}, 2 (g} = U)o @)
{0} z7{gt={o o}, zrigt= .

By observing that o is independent of L = hf and {g} = 0for L = 0, (23) may be integrated
to give

¢
{g(x2)} = h( L /&l dé){a(x,)}, ¢ = L(x))/h. 29

In terms of the known functions f; (i = 1, 2, 3), if we define
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4
aij =J; ./;./]-df (ls.’= l,2),

¢
¢33=(l—")J; fi:d, an=a3=0 (i=12), (25)
[A] = [aij] ('t.’= 1’29 3)v (26)
from (22) and (24) we find
h
(o0e0) = P (a1, @n
E -1
{o(x2)} = m[ﬁl {g(x2)}. (28)

With (20) and (22b), (28) gives the desired relationship between F,and g; (i = 1, 2, 3). and
(8) becomes a system of integral equations in g;(x,). Specifically, from (28) we obtain

__E L )
a'—nh(l-}-v) Tudh 671292 v

_ E +h
2P —nh(l+v) Y219, 6?2292 ,
E 2
oy = nh(l+v)v;13y;, (29a-)

where

‘y =E2—2- = =—.al2 =El-l'
1 A’ Yi2=7¥n A’ Y22 A

|
y3=—1, A= an“zz"“fz- (30)
ass

By substituting (20) and (29) into (8), the system of integral equations becomes

LY g1(t)

% T gt O

1 h 1
"m(?u(«‘z)&(&)*‘a?nz(xz)yz(xz))=EF|0(-\fz)o —a<x;<a, (31)

L 71 (7)) I
24n _.(lz—xz)zdlz-*.zn Y ky(2)g,(ry) de,

-a fm2

1

- 6nh(l +v) Fyo(x;), —a<x;<a, (32)

h
<721(X2)9| (x2)+ 3 ?zz(xzz)gz(xz)) En?
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1 | gs5(t2) 1 [ 2
AT Gmxyitet 3 ), L g dn

16 12(14v)
- m?ss(xz)gs(xz) = —S—Eh—*ﬁo(xz), —a<x;<a (33

After solving the integral equations (31)~(33) for g, (i = 1, 2, 3). the stress amplitudes
g{xy) (i = 1. 2, 3) at a location x, (—a < x; <a) may be obtained from (29). The stress
intensity factors k,(x;) and k;(x,) along the crack front may then be evaluated from (19).

From (11) it is seen that in developing the line spring model the stress intensity factors
kx(x:) and k;(x,) are defined in terms of the stress components o, and &,,, respectively
(Fig. 1). The conventional concept of mode II and III stress intensity factors requires that
they be defined in terms of stresses referred to a coordinate system that consists of the
normal and the tangent to the crack boundary and the normal to the crack plane. Thus, if
we let x3 and x7 be the tangent and the normal to the crack front in the x,x; plane (Fig. 1}
and & be the angle between the x, and x} axes, transforming the stress tensor to x}, x3, x5
coordinates the mode II and III stress intensity factors may be expressed as

ky = —kysinf+k;ycos8,
ky =k cos8+k,sin, (34a.b)

where for the typical case of a semi-clliptic profile, the angle 0 is given by

-1 [ (Lofa)(xy/a)
0=t ! (—“’::::.:‘::_::) 35
"\ e 9

Note that such a rotation will not aftect the mode I result.

When the preceding formulation is used it becomes apparent that there is a problem
for large values of the normalized half crack length a/h. As afh — oo, the plane strain
solution is not recovered. Because of the underlying assumptions made, this large a/h
behavior of the solution should be an inherent part of the model. In terms of the plate
variables, the plane strain limit is represented by the following algebraic equations that can
be solved in terms of the known loads, F4{x;) (i = 1,2, 3):

0'1(-‘2)_ 1 _ ~1
E -El_zF“’(xz) —n_——h(l+v)

h
(Vl 1(x2)g,(x3) + 6?12(1“2)92(-‘52))-

oy(x) 1 1 P )
SE "B et = 6rh(1+v) (72‘("‘2)91(-’52)‘*' gY2(x2)g:(x)
8(1+v)a;(xy) _ 12(1+v) _ =16
SEh = TSER Fio(xy) = lsnh)’n(-‘z)ga(xz). —d<X;<a

(36a—)

By comparing these equations with the integral equations (31)—(33), it is clear that the
integrated terms of (31)-(33) should collectively drop out as a/h ~ co. In the mode |
formulation the integrated terms individually vanish for a/h — o and the plane strain case
is properly recovered.

At this point it is worthwhile examining how this limit is obtained for the mode I case.
This will hopefully show why the antisymmetric formulation fails to recover this resuit.
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First we consider the through crack equations for tension and bending (see, for example,
Joseph and Erdogan, 1989). The equation for tension is identical to the in-plane shear
equation (3). The bending equation is similar to the equation for twisting (4) as shown
below:

h 1 Bi1) b _ =0
m:}ﬂ (t;—xz—_)zdt2+57—:L,kbb(z)ﬂ‘(tz)dtz" g —9<x:<a 37

where

5

Ty 2Koll=D- (38)

ky(c) = —kaa(2)—

The right-hand sides of these uncoupled equations are ¢/E for tension and ¢,/6E for
bending. If we assume these ratios to be of order one, then for proper balancing of terms
in the equation, the sum of the integrai terms must also be of order one for ~a < x; < a.
This is true for all h/a. Given the kernels in the mode I problem, this balancing is
accomplished by having the displacement v, which corresponds to tension, proportional to
the half crack length a, and the rotation 8,, which corresponds to bending, proportional to
aih.

If we now consider the integral equations for the part-through crack, the above result
is no longer valid. The scaling changes with the addition of the line spring terms. These
terms arc dominant, and must therefore balance with the right-hand sides of the equations
which arc the same as for the through crack casc. Now the displacement quantity v is
proportional to A, and f1, is independent of both a and A, Note that this result simply comes
from the plane edge crack problem which is independent of a. The effect of this scaling on
the integral terms is to force them to be of order A/a. Therefore, as ifa — 0 the integral
terms drop out and the plane striain equations, analogous to (36a-c), are recovered for the
mode I case.

Now it is perhaps necessary to give a physical interpretation of what has just been
said. First, the physical interpretation of an infinite displacement, particularly an infinite
rotation, is simply that an infinitely thin plate with a through crack has no resistance to
finite loading. This resistance could have come from the stiffness of the local plate edge
and/or the clamping cffect of the distant crack ends. The physical reasoning as to why the
integral terms in the part-through crack case approach zero as hfa — 0, is that neither one
of these factors can prevent the crack surfaces from displacing or rotating (note that all the
terms in the integral equations represent force quantities). The local stiffness of the plate
edge becomes negligible and the mechanics of the problem away from the crack ends is not
affected by the crack ends. In the part-through crack problem, the only remaining means
of resistance comes from the net ligament forces which are represented by the line spring
terms. These terms come from the solution of an elasticity problem and properly account
for any local “'stiffness™ that the plate may have. The problem is now identical to the line
spring model version of the planc edge crack problem, and therefore the plane strain
solution is recovered.

In the antisymmectric casc one would expect the same behavior. The infinitely thin plate
with a through crack should not support finite in-plane shear, transverse shear or twisting
loading. The corresponding displacements would then become infinite for A/a — 0. If this
were the case, then as in the mode [ line spring model, all integral terms would vanish, and
the plane strain equations (36a-c) would result. However, this does not happen because
the local twisting stiffness of the plate does not diminish as A/a — 0. As mentioned in the
previous paragraph, for the line spring model to work, the line spring terms should account
for all local plate stifiness as hfa — 0,

The problem from a mathematical point of view is that the twisting kernels, both &,
and k;; in (4), do not reduce the magnitude of their corresponding displacement as A/a —
0. An order one value of the displacements g,(x;) and g,({x,), after being integrated with
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k3, and k;; respectively, will result in an order one term. These integral terms are therefore
of the same order of magnitude as the line spring terms for small &/a. This prevents the
plane strain solution from being reached.

First we examine the small h/a behavior of the twisting kernels. As will now be
shown, these kernels behave like delta functions for A/a — 0. First note that for a/h - o
(or h—0), from (6a) and (6e) k,,(z) —» 0 except at f; = x, where k,;(2) is infinite, as
seen from (7a). A delta function must also have the property that its integral from nega-
tive infinity to positive infinity be finite and non-zero. By rewriting (6a) as follows:

5 d/le 4
kya(z) = h(i+7) [“21"0(2) e (_— -z ‘Kz( ))] (39)
it is easy to show that
1 —,/ 10 [* VAL
5= kzz(-) de; = Ko(l Ddz = ———, (40)

oo 27 | 24n(1+v) ) T 24(1+v)’

where the following result has been used :

J‘ Kn(Z)d’=§. (4])
£]
Therefore we have
[ /To 10
“/l"‘mbi; ‘d/\zz(&)yz(fz)dlz 5407 5(-":.-’:)yz(tz)dlz 24(l+ )92( x2).

42)

In a similar way, by using the following equivalent form of (6b),

_5/10 d[d (=2
k23(" 12;}2(1‘*_") da[ .‘ (?—Z-IKQ(Z)—KQ( )}>+2K0( )] (43)

it may be shown that

o ~ /10 dgy(xy)
ﬂfaglmfj ky3(2)gs(t2) dty = %(+y) dx, (44)

For these two cases, the integral term will be of order one if the displacement is of order
onc. All other integrated terms of (31)~(33) vanish individually as a/h becomes large.
Therefore the limit of (31)-(33) is not as given by (36a—c) but rather by the following set
of equations:

i -1 h
Eh == Fio(x;) = (T4 (Yl 1(x2)g1(x2) + 6?12(—\’:)92(-“2))

-1 h d
Ehz Filxy) = “m (Y:t(xz)gt(-tz)'i‘ g?zz(xz)gz(xz)) 24([) ( Ax2)+ 93(«:2))
12(L+v)

~ 16
SEh Fyo(x2) = ,733(’6’)9'3("2) (45a—)
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It should be pointed out that the term resulting from k,; is much smaller than that
from k.. for large a/h. In the part-through crack problem, as h/a approaches zero, the
transverse displacement g,(x.) approaches either a constant value for transverse shear
loading or zero for twisting or in-plane shear loading. It follows that the derivative of g5(x,)
as given by (44) approaches zero for large a/h. Therefore, the mathematical reason why
this formulation does not recover the plane strain result is the presence of the term given
by (42). Note that this delta function term is similar to the line spring terms and effectively
changes y,; in (45b). In this thesis, Desvaux (1985) remarked that the twisting moment was
working too hard. This delta function term is the reason why.

In order to understand the consequences of this term, consider the a/k — oo limit of
the twisting equation (4) for the through crack case. From (42), (44) and (20b) we obtain

"\/1—6 dy:(-‘z)) o
m (gz(x:)-%- i, )= ~¢E AKX, < a. (46)

This equation is similar to the plate equation from Reissner (1947), introducing transverse
shear deformation into the relation between twisting rotation ¢, (or §;) and transverse
displacement ¢, (or w). as follows:

ow ¥V, 12(1+v)
B+ W E 5 T 0. “7

where 0, is the transverse shear deformation.

One could perhaps conclude that the reason why the Reissner formulation does not
work is because 0, for the infinitely thin plate is not zero. Recall that 9, cquals zero in the
classical plate theory which results from the assumption of infinite shear rigidity. However,
this conclusion cannot be valid because the left-hand side of the relation (46) would put a
restriction on g, and g, which is not there in the plane edge crack problem. To iltustrate
this point for hfa — 0, and by referring to Fig. 2, consider the exampic of in-plane shear
loading (N, # 0) where the in-plane displacement g, # 0 (3, # 0) and the transverse
displiscement g become zero due to symmetry (35 = 0). The problem should be thought of
as a plate theory represeatation of an antiplane shear clasticity problem. The condition 0, =0
would require that the rotation g, = 0 (8, = 0). This is obviously incorrect considering the
physics of the problem shown in Fig. 2, where 8, # 0. The coupling of the line spring
relations (27) and (28) predicts that both g, and g, be non-zero, which is the physically
expected result for both in-plane shear loading and for twisting loading. Therefore, 8, # 0
is not the reason why this formulation does not work. This raises the point made by Desvaux
(1985) concerning the uncoupling of these equations by sctting y,, and y,, to zero in
{29a. b). This would clearly lead to the above contradiction. Results obtained by using this
assumption for in-plane shear and for twisting loading appear to recover the plane strain
result too casily, i.e., for a/h not very large.

The problem is actually that the transverse shear deformation 8, of the plate does not
become infinite for hfa — 0. If this were the case, then the infinitely thin plate would have
no resistance to twisting and the model would work. The transverse shear deformation that
is predicted by the Reissner plate theory for twisting of an infinitely thin plate is of order
one magnitude. This same plate theory for mode [ loading predicts 0, to be of order (afh)'?
for hija — O (sce Joseph and Erdogan, 1990). This raises the question of what the elasticity
solution of a thin “plate™ would predict for twisting resistance. If the answer is, “no
resistance™, then the Reissner plate theory is not sufficiently advanced to formulate this
problem. If the Reissner plate theory prediction is correct, then a more advanced plate
theory will still not work with the antisymmetric version of the line spring model (without
some adjustment). Regardless of what the elasticity solution is, we can conclude that the
Reissner plate theory in twisting is too rigid for the line spring model to work. Therefore
an adjustment is necessary.

SAS 27:6-E
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In order to make this plate theory compatible with the line spring formulation, it is
necessary to artificially change the twisting equation (32). Any non-zero stiffness for h/a —
0 must somehow be removed. The only non-zero term results from the twisting kernel, k..,
and is given by (42). The derivative term (44), which comes from the kernel k,;, approaches
zero on its own due to the behavior of the transverse displacement g;, which is at most a
constant for h/a — 0 (note that all displacement quantities must become constant under
plane strain conditions by definition). Therefore the equations must be adjusted so that for
small h/a the term (42) is subtracted out. The simplest way to achieve this is to subtract the
delta function behavior of the kernel from the kernel itself for all A/a. The integral term
resulting from k.., i.e.,

l a
o J‘_a k22(2)g:(ty) dt:, 43)

is therefore replaced with

l d
— (k,()+ \/_ - §(x;— fz))gz(‘z)dfz

). 12(1+v)

V10 gx(x2). (49)

—“J. k32(2)g:(e2) dt; +24(l+ %)

After making this adjustment, all integrated terms vanish for a/ft — oo and the plane strain
solution will be recovered as in the mode I case. The modified sct of integral equations
includes (31) and (33) and is completed by replacing (32) with

[ gt L[ /10
2.4,% Z;z—‘_’;'—) df +27[ _aj-z kzj(a)qj(lz)d[+ 24(|+ )yZ( 2)

| h 1
‘m(‘/:l(«‘z)y:(/‘zﬂ‘ 6?22(«‘2)!/2(-\72)) R Fa(xy), —a<x;<ua (50)

It should be noted that there are other ways of forcing the solution to behave properly
at afh — co. For example, the term coming from the kernel k,; given by (44) could also be
subtracted from the twisting equation so that in effect the transverse shear term (46) would
be removed from the equations at A/a — 0. We choose not to remove it because this part
of the transverse shear term approaches zero as h/a approaches zero. Another possibility
would be to subtract the term given by (42) with g,(x,) replaced by g7 (x,) or g7 (0), where
g% would come from the solution of (45a, b). The solution of (45a, b) would represent the
plate theory version of the plane edge crack problem. This is not done because it would
mean that the plate theory (when used with the line spring model) only has a problem for
small h/a. We believe that this same problem exists for all 4/a. Therefore, considering the
behavior of k,; and k,,, the chosen method is believed to be reasonable, and as will be seen
from the results, does a good job of matching up against existing solutions.

3. SHAPE FUNCTIONS FOR STRESS INTENSITY FACTORS

The stress intensity factor shape functions f, f; and f; that appear in (19) may be
obtained by solving the antiplane shear and the plane strain elasticity problems for a strip
containing an edge crack of length L and subjected to antisymmetric loading conditions
shown in Fig. 2. For an infinite plate with an edge crack the solution for the antiplane shear
problem giving mode III deformations around the crack tip is known in closed form
(Erdogan, 1978). By referring to Fig. 2 and observing that in this problem 4, is independent
of x,, for a crack surface traction
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0';2(0,X3} = ""Gz(‘), t= ku"‘x;, O<t< L, (5])

the stress intensity factor may be expressed as (Erdogan, 1978 ; Joseph and Erdogan, 1987):

. (7 7 Gz(Ls)\/!-sm (2: )/sin2 (—152—2—)
ky=~— /mtanmf ds. (52)
hN2r 2R, . (n ) :
sin o7 {(s—1)

For example, if the plane is under in-plane shear loading N,, (Fig. 2) then

Ny F
020,%) = =G =2 = =0, (53

and from (52) we obtain

ky = m\/i—:\/é ;2‘5‘8“ (fzé), &= Ljh (54)

If, on the other hand, the plate is subjected to uniform twisting moment M, (Fig. 2) we
have

6M; xy 6F; x t
712(0,x3) = =Gy(0) = = 15 = it s = 0’2(1 - ,;-ﬁ) (55)

> (l sin TCL)
ky = a3 /hfx(&) = a3 /h - lau( ){ \/l—_ﬁ dz}. (56)

From (19b), (25) and (54) it may be seen that

2 -4
fi(§) = = tan (Zg’i), ayy = T log (cos %ﬁ) 57

For the transverse shear loading of the plate (Fig. 2), the probiem is a mode I edge
crack problem and can be formulated in a straightforward manner (Joseph and Erdogan,
1987). Consider the cracked medium — oo < x, < 00, (—A/2) < x; < (h/2) shown in Fig.
2 which is under plane strain conditions. Let ¢,;(0, x,) acting on the crack surfaces be the
only external load. Defining

us(0,x3) = w(t), ¢3(0,x;) = ~G5(1), t=h/2—x;, 0<t<h, (58)

the integral equation for the mode II crack problem may be expressed as (Joseph and
Erdogan, 1987; Kaya and Erdogan, 1987):
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%‘{ 1 1 12t 1
W= "G ) T GxD’ @h—t=1)?

%ﬁ +mt. T)}W(t) dr = ——R%%QG;(I), O<t< L, (59)
where
m(t, 1) = n‘[:o [Si(t.z,0)+S (h—t,h—1, 00+ S, (1, T,20) + S:(h—t, h— 7, )] da, (60)
~-{r+nNx
Si{t.t.2) = {fe- ™[ =2a’rr+a*(t+ ) ~a] + 8 kit —4x*h (1 +1)

Ax)
+a’[2ht 4207 + 21+ 2ht) — [t + T+ 2h]) +a},  (61)

Wl — 11z

Si:{t.r.a) = X

o= AL Mapt,
) e a{r— )+ 1]+ [4h* 1 —dit7]

+a’[—2h% =2ht 42Ut} +a[ T+ 1+ 2h] -1}, (62)
Afa) = ™ —(@Ph? +2) +e 7, (63)

The integral equation (59) is solved by using the technique described by Kaya and
Erdogan (1987). Notc that in the Reissner theory used to formulate the plate problem, the
transverse shear stress o4y is parabolic in x,. In calculating the mode I stress intensity
factor shape function f; defined by (19), therefore, the input function G, in (59) is assumed
to be parabolic with amplitude o; = 3V,/2. In tabulating the results, the stress intensity
factor for a uniformly distributed crack surfuce traction is also given. The integral equation
(59) is thus solved for

v
61300, x3) = —G,(0) = —a3t(h—DQ2/h)?*, oy = —:2"1, t = hj2—Xx;, (64)
613(0,x3) = —=G,() = —a,. (65)
The solution of (59} is of the form (Kaya and Erdogan, 1987):

wit)=J/L—-tF(1), 0<t<L (66)

where F{1) is a bounded function. After solving the integral equation, the stress intensity
factor is obtained from

ky = lim —— . (67)

The mode II and III stress intensity factors calculated from (54), (56) and (59) and
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Table |. Normalized mode II and [ stress intensity factors for an edge
crack in an infinite strip under plane strain and antiplane shear loading
conditions [see eqns (53), (55). (64) and (65)]

z . k 3 k 3 k 2 k 2
E=1Lih — =
o /L a:\/z a,/L on/i

0 1.0 10 0.0 {1215
0.025 1.0003 0.9684 0.0670 1.1215
0.05 1.0010 0.9373 0.1313 1.121S8S
0.1 1.0041 0.8765 0.2522 1.1219
0.15 1.0094 0.8172 0.3628 1.1233
0.2 1.0170 0.7594 0.4638 1.1264
0.25 1.0270 0.7030 0.5556 1.1323
03 1.0398 0.6477 0.6392 1.1419
0.35 1.0558 0.5935 0.7156 1.1562
0.4 1.0753 0.5403 0.7859 11763
0.45 1.0992 0.4881 0.8512 1.2034
0.5 1.1284 0.4368 09131 1.2391
0.55 1.1642 0.3864 0.9733 1.2854
0.6 1.2085 0.3369 1.0339 1.3450
0.65 1.2642 (.2883 1.0980 1.4221
0.7 1.3360 0.2408 1.1700 1.5229
0.725 1.3801 02174 L2101t 1.5852
Q.75 1.4315 0.1943 1.25712 1.6578
0.775 1.4922 0.1715 1.3102 1.7435
08 1.5650 0.1491 1.3726 1.8459
0.825 1.6541 0.1272 [.4482 1.9708
0.85 1.7663 0,1057 1.5429 2.1269
0875 1.9125 0.0848 1.6664 2.3289
09 2.1133 0.0646 1.8368 2.6037
0.91 22171 0.0567 1.9251 2.7448
0.92 2.3404 0.0490 2.0304 29116
0.925 24114 0.0453 20911 3.0074
0.93 2.4901 0.0416 2.1584 31132
0.94 2.6767 0.0343 2.3185 3.3634
0.95 2.9180 0.0273 2.5260 3.6854

normalized with respect to a,\/z (i=1, 2, 3, 0) arc shown in Table 1. The results are
accurate to within four significant digits. In applying the results to the line spring model,
analytical expressions for the shape functions fi(&) (i = 1, 2, 3), & = L/h, are determined
by standard curve fitting, where j}(é)/\/é correspond to the normalized stress intensity
factors given in Table 1. To improve the effectiveness of the fit and to reduce the number
of unknown cocflicients, it is necessary to take into account the asymptotic form of the
stress intensity factors ky and kyas L—»0and Lo horas { - 0and £ — 1, namely

(krk)~ < | (68)

Thus, the shape functions £ (i = 1, 2, 3) defined by (19) and f, defined by &k, = ao\/f-t  fo(€)
for the uniform transverse shear stress may be cxpressed as

S = -—--\/-E—E > C¢ (i=0,1,2,3), {=Ljh (69)
-— f-Q

7=

The coefficients C; are given by Table 2.
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Table 2. Coefficients C,, for the stress intensity factor shape functions £, defined by

(19) and (69) [Note that f/\/Z = EC,&//(1 =" = k/(a,,/L), where & = Ljh and
k/(a./L) are given in Table 1]

j Ci/ CI; Clj C“f

0 1.0 1.0 0.0 L.12152
1 -0.5 -1.773760 2.73069 —0.55939
2 0.2861637 0.937496 ~3.44019 -0.18069
3 ~0.2668382 —0.602894 0.33305 0.39478
4 0.2215318 1.176914 2.80514 207787
S -0.1772160 —2.183231 ~2.94406 -—5.40893
6 0.1090614 2.906943 0.74775 5.82745
7 —~0.0441431 ~2.121964 0.63860 —3.11784
8 0.0080606 0.659759 ~0.32028 0.67088

4. RESULTS AND DISCUSSION

The system of integral equations, either the “original™ equations. (31)-(33), or the
“modified™ equations, (31), (50) and (33), are solved for the following three loading
conditions :

Fio(x) = =N Falxy) =0, Fip(xp) =0, (70
Fylxz) = — M7, Fio(x:) =0, Fyolx;) =0, 7y
Fyo(xa) = =VT, Fiolx) =0, Fylxy) =0. (72)

Equations (70), (71} and (72), respectively, correspond to uniform in-planc shear, twisting,
and transverse shear foading of the plate containing a surface crack (Fig. 1). Since the
integral equations are coupled, for cach loading there will be a primary and a sccondary
stress intensity factor which are determined from (29) and (19). It should again be empha-
sized that in the case of transverse shear loading (72) leading to a primarily mode 11
deformation state around the crack front both in the plance strain problem discussed in the
previous section [sce eqn (64)] and in the plate problem having a surfuce crack, o3 is
assumed to be parabolic in x;. For each loading both stress intensity factors are normalized
with respect to a primary stress intensity factor obtained from the corresponding two-
dimensional elasticity sotution of the edge crack problem described in the previous section
and given in Table 1. Specifically, the normalizing stress intensity factors for the loading
conditions (70), (71) and (72) respectively, are

ky = 0P Vhfi(Eo)s &= Lofh, (13)
kyr =03 Jhf2(Eo). &0 = Lojh, (74)
ko =67 Jhf3E), o= Lolh. (9

The functions f, (i = 1, 2, 3) are given by (69), and j}(é)/\/E by the first three columns of
Table I, where

6
NP, 67 = E—,—M’."z. oy = 5 Ve, (76a-c)

o=

o =

The stress intensity factors ky(x,) and k;(x,) are then transformed into the plane normal
to the crack front by using (34) to obtain k3(x;) and &(x,).
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Table 3. Normalized stress intensity factor at the center of a semi-elliptical surface crack in a plate subjected
to membrane or in-plane shear, twisting moment and transverse shear [original equations (31)—(33) were used ;
v=103]

alk

Loh 0.5 1 L5 2 3 4 S 6 8 10

In-plane shear, mode II1. k,/ky,

0.05 0.969 0.978 0.981 0.982 0.983 0.983 0.983 0.984 0.984 0.984
0.1 0.899 0.927 0.935 0.939 0.942 0.943 0.943 0.943 0.944 0.944
0.2 0.738 0.800 0.820 0.829 0.837 0.840 0.842 0.843 0.843 0.844
0.3 0.619 0.698 0.727 0.740 0.752 0.758 0.760 0.762 0.764 0.765
04 0.547 0.635 0.670 0.688 0.704 0.712 0.716 0.719 0.722 0.724
0.5 0.503 0.600 0.642 0.665 0.688 0.699 0.706 0.710 0.716 0.719
0.6 0.467 0.577 0.629 0.659 0.692 0.709 0.720 0.727 0.736 0.741
0.7 0.420 0.547 0.613 0.653 0.700 0.726 0.743 0.755 0.770 0.780
08 0.350 0.489 0.570 0.623 0.688 0.728 0.754 0.773 0.799 0815
0.85 0.304 0.443 0.529 0.588 0.664 0.711 0.744 0.767 0.800 0.821
0.9 0.249 0.382 0.470 0.532 0.617 0.672 0.711 0.740 0.781 0.809
0.95 0.184 0.299 0.380 0.442 0.530 0.590 0.635 0.670 0.721 0.757

Twisting, mode 1L, k/ksr

0.05 0.969 0.978 0.981 0.982 0.983 0.983 0.983 0.983 0.983 0.983
0.1 0.895 0.924 0.932 0.936 0.939 0.940 0.940 0.941 0.941 0.941
0.2 0.712 0.779 0.801 0.811 0.819 0.822 0.823 0.824 0.825 0.826
0.3 0.550 0.642 0.674 0.689 0.702 0.708 0.710 0.712 0.7t4 0.715
0.4 0.4t1 0.523 0.566 0.587 0.606 0.615 0.619 0.622 0.626 0.628
0.5 0.273 0.410 0.467 0.497 0.526 0.539 0.547 0.552 0.559 0.562
0.6 0.103 0.277 0.357 0.401 0.447 0.470 0.484 0.493 0.504 0.5t
0.7 -0.182 0.074 0.193 0.263 0.341 0.382 0.408 0.425 0.447 0.460
08 -0636 -0335 -~0.144 ~0.020 0.128 0.211 0.264 0.300 0.347 0.377

085 -1L13 ~0766 -0508 -0330 -0.109 0.020 0:[03 0.162 0.238 0.286
09 =217 -L7 =132 -103 -0654 -0425 -0273 -0.165 -0.021 0.071
095 —-6.01 -5.27 -443 =375 =281 =221 -1.79 ~149 -1.09 -~03823

Out-of-plune shear, mode I, &, /k o

0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.1 0.9% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.2 0.988 0.996 0.998 0.999 0.999 1.000 1.000 1.000 1.000 1.000
0.3 0952 0.982 0.991 0.995 0.998 0.999 0.999 0.999 1.000 1.000
0.4 0.883 0.953 0.976 0.986 0.994 0.997 0.998 0.999 0.999 1.000
0.5 0.790 0.909 0.952 0972 0.987 0.993 0.996 0.997 0.998 0.999
0.6 0.685 0.851 0918 0.950 0.978 0.988 0.992 0.995 0.997 0.998
0.7 0.576 0.780 0.873 0.920 0.963 0.979 0.987 0.991 0.995 0997
08 0.467 0.693 0811 0.876 0.938 0.965 0.978 0.985 0.992 0.995
0.85 0.410 0.640 0.769 0.844 0.919 0.952 0.969 0.979 0.988 0.993
09 0.350 0.576 0.714 0.799 0.889 0.932 0.954 0.968 0.982 0.998
0.95 02717 0.487 0.629 0.723 0.832 0.889 0.921 0.942 0.965 0.977

The effect of the delta function term coming from the twisting kernel (42) is shown in
Tables 3 and 4. In these tables a summary of results giving the primary stress intensity
factors at the maximum penetration point of a semi-elliptic surface crack corresponding to
the loading conditions (70)-(72) is presented. The results are obtained for v = 0.3 and for
the length parameters covering a relatively wide range [0.05 < (Lo/h) €£0.95 and
0.5 € afh < 10, Fig. 1]. In Table 3 the original intcgral equations (31)—(33) are used to
obtain the solution. These equations do not predict the plane strain solution for long cracks
for either in-plane shear or for twisting loading, as can be seen from the table. Note that
the normalized stress intensity factors correspond to the plane edge crack that may be
considered as the limiting case of the surface crack for a — 0, a being the half crack length.
Thus the deviation from unity in the primary and from zero in the secondary stress intensity
factors should correspond to the effect of the length and profile of the crack. The actual
limit predicted by these equations can be obtained from the algebraic solution of (45)
together with (29) and (19). Again the plane strain solution, in terms of the plate variables,
is simply the solution of these equations without (42), as given by (36a—c). Table 4 is identical
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Table 4. Nomalimd stress intensity factor at the center of a semi-elliptical surface crack in a plate subjected to
membrane or in-plane shear, twisting moment and transverse shear {modified equations (31}, (50), (33) were

used v =03}
u'h
Lok 0.5 ! 1.5 2 3 4 5 6 8 10
In-plane shear, mode HL &,k
0.05 0.985 0.995 0.997 0.998 0.999 1.000 1.000 1.000 1.000 1.100
0.1 0.948 0.980 0.990 0.994 0.997 0.999 0.999 1.000 1.000 1.000
0.2 0.844 0.932 0.962 0976 0.988 0.993 0.995 0.997 0.998 0.999
0.3 0.737 0.869 0.921 0.946 0.970 0.980 0.986 0.989 0.993 0.995
04 0.643 0.799 0.868 0.905 0.942 0.959 0.96% 0.975 0.982 0.986
0.5 0.559 0.723 0.805 0.853 0.903 0.928 0.944 0.954 0.966 0.973
0.6 0479 0.642 0.732 0.787 0.85¢ 0.886 0.908 0.923 0.941 0.953
0.7 0.398 0.552 0.646 0.709 0.78% 0.830 0.859 0.880 0.907 0.924
08 0.310 0.452 0.546 0.613 0.701 0.756 0.794 0.821 0.858 0.882
0.85 0.264 0.396 0.489 0.557 0.649 0.709 0.751 0.782 0.825 0.853
09 0.214 0.334 0423 0.490 0.586 0.650 0.696 0.731 0.779 0.813
0.95 0.158 0.260 0.340 0.404 0.498 0.565 0.614 0.652 0.707 0.746
Twisting, mode HL k/k ¢
0.05 0.985 0.995 0.997 0.998 0.999 1.000 1.000 1.000 1.000 1.000
0.1 0.946 0.980 0.990 0.994 0.997 0.999 0.999 L.000 1.000 1.000
0.2 0.832 0.928 0.960 0.975 0.9%8 0.993 0.995 0.997 0.998 0.999
0.3 0.696 0.852 0912 0.941 0.968 0979 0.985 0.988 0.992 0.994
04 0.547 0.753 0.841 0.888 0.933 0.953 0.965 0.972 0.980 0.984
0.5 0.369 0.617 0.738 0.805 0.873 0.909 4929 0.942 0.957 0.966
0.6 0.132 0.419 0.577 0.672 0.777 0.832 0.866 0.888 0916 0.932
07 -0234 0.091 0.299 0436 0.599 0.690 0.747 0.787 0.837 0.868
0.8 0942 05888 -0297 0083 0.196 0.364 0475 0.552 0.653 0.716
N8 167 ~132 0954 0664 —-0262 0001 0.159 0.279 0.437 0.537
0.9 -32 -295 -245 -2.00 -1 —0897 0592 -0374 0081 0.106
095 -918  -922 -830 -7 —~568 -452 -369 308 =225 L7
Qut-of-plane shear, maode L & /&,
0.05 1000 1000 1.000 1000 1.000 OO0 10045 1000 1.000 LLOO0
0.1 0.999 1.600 1.000 1.000 1.000 1006 1060 1.000 1.000 1.000
0.2 0.98% 0.996 0.988 0.999 0.999 1.000 100G 1.000 {.000 1.000
03 0.952 0.982 0.991 0.995 0.998 0.9% 0.999 0.999 1.000 1.006
0.4 0.883 0.934 0.977 0.986 0.994 0997 0.998 4.999 0.999 £.000
0.5 0.790 0.910 4.953 0.973 0.988 0.994 4.996 .994 0.999 0999
0.6 0.683 0.852 0.920 0.952 0.979 0.989 0.994 0.996 0.998 0.999
0.7 0.576 0.781 0.873 0.923 0.966 0.982 0.990 0,994 0.997 0.998
08 0.467 0.694 0.814 0.880 0.944 0.970 0.982 0.988 0.994 0.997
0.85 041t 0.642 0.773 0.849 0.926 0.959 0,975 0.984 0.992 0.995
0.9 0.350 0.578 0.718 0.805 0.897 0.940 0.962 0974 0.987 0.992
0.95 0.278 0.488 0.633 0.730 0.842 0.899 0.932 0.951 0972 0.983

to Table 3 except that the modified equations (31), (50) and (33), which include the delta
function behavior of the twisting kernel, are used to obtain the solution. As a/h gets large
for a given crack depth Ly/h, the planc strain solution is approached in Table 4 for all
loading cases.

Some sample results showing the effect of crack front curvature on the stress intensity
factors are shown in Fig. 3 for an infinite plate containing a semi-elliptic surface crack and
subjected to in-planc shear loading N7, away from the crack region. Results for this figure
were obtained with the original integral equations, (31)-(33). Note that because of the
crack front curvature the difference between particularly the sccondary stress intensity
factors k, and k% is quite large. All the remaining results in the paper are given in terms of

-, and k5, which are referred to the coordinate system x}, x%, x3 where x5 is a tangent to
the crack front and x; is identical to x,.

For the same in-plane shear problem whose solution is presented in Fig. 3, the mode
11 and III stress intensity factors obtained by Sorensen and Smith (1977) by using the
alternating method and that given by the line spring model are shown in Fig. 4. The original
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Fig. 3. Comparison of the stress intensity factors k and k' obtained from (34) (full lines) with &,

and k,, which are defined by (11) and calculated from (19} (dashed lines) for a plate with a semi-

elliptical surface crack under in-plane shear loading N'T;. Original equations (31)—(33) were used ;
ath=1,v=028.

integral equations were also used for this example. In Fig. 5 the modified equations are
used for the same problem. Similar plots are given in Figs 6 and 7 for a/h = 2.0, 0.5, and
4.0. In comparing these results it may be worthwhile to observe that while the line spring
results are necessarily approximate, the degree of accuracy of the results obtained from the
alternating method is not completely known. The in-planc shear solution of Sorensen and
Smith (1977) is reported to be in excellent agreement with the finite element-alternating
results obtained by Simon ¢t af. (1987). However, Raju and Newman (1979), in comparing
the mode | stress intensity factors given by various numerical methods, found that there
was a discrepancy of 10-25% between their finite clement results and the results obtained
by Smith and Sorcasen (1974) from the alternating method. On the other hand, for the
mode I surface crack problem rather good agreement has been observed between finite
element and line spring results (see, for example, Joseph and Erdogan, 1989).

For the case of transverse shear, there are two sources for which a comparison with
the present method is possible, Simon ef al. (1987) and Nikishkov and Atluri (1987), who,
by using the “*Equivalent Domain Integral™ method based on the method of Virtual Crack

1

~ [}
L IN~PLANE SHEAR\ ™
SENI-ELLIPTICAL\ M
| CRACK \
a/hwl, v=. 25 ‘

i 1 i A 1 " IS ST W | - A A A i 1 A A A r J

%o 5 i. %, & 1.

x2/a xz2/a

Fig. 4. Comparison of the normalized mode H and 111 stress intensity factors k3 and k) given by

Sorensen and Smith (1977) (dashed lines) and by the line spring model (full lines) for a plate with

a semi-elliptical surface crack under in-plane shear loading N 7. Original equations (31)~(33) were
used (see Fig. 5);a/h = 1, v = 0.25.
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Fig. 5. Comparison of the normalized mode 1l and 1H stress intensity factors &3 and & given by

Sorensen and Smith (1977) (dashed lines) and by the line spring model (full lines) for a plate with

a semi-elliptical surface crack under in-plane shear loading N 7;. Modified equations (31), (50) and
(33) were used : a/h = |, v = 0.25.

IN~-PLANE SHEAR
SEMI--EILLIPTICAL
3 CRACK

a/hm2, pwm 25

i i Ao i i Al i 3. i A
‘0. ) 1. %o 8 .
xp/a xn/8
Fig. 6. Compurison of the normalized mode H and 1 stress intensity factors &5 and & given by
Sorensen and Smith (1977) (dushed lines) and by the line spring model (full lines) for a plate with
a semi-clliptical surface erack under in-plane shear loading N 5. Modified equations {31), (50) and
(33) were used ; a/h = 2, v = 0.25.

Extension, have investigated the problem of a cantilever square plate (length =
2.5 x thickness) with a transverse surface crack (a/h = 0.5, Ly/h = 0.25) subjected to trans-
verse end loading. The plate dimensions are such that a comparison to the infinite plate
solution presented is acceptable, although some error is expected. The side dimensions of
the platc are 2.5 times the total crack Iength, 24. The loading is such that a parabolic shear
distribution at the crack location of the uncracked plate is a recasonable assumption (sec
Simon et al., 1987). Also, for a/h = 0.5 the line spring modecl is ncar its limit of reasonable
application (sec Figs 4-6). The results are presented in Fig. 8 for the original equations and
in Fig. 9 for the modified equations. The difference between the two line spring solutions
for this loading is due to secondary contributions. For in-plane shear and twisting the
differences between the two sets of equations result from primary effects and are therefore
greater (see Figs 4 and 5). Comparison with the solution of Nikishkov and Atluri (1987)
is quite good. The specific method chosen for comparison from Nikishkov and Atluri (1987)
is “*from displacements™ (see Figs 19 and 20 of this reference). It is not known which of the
two sets of numerical results is more accurate. The comparison in these figures shows that
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Fig. 7. Comparison of the normalized mode 1l and 111 stress intensity factors k3 and k' given by

Sorensen and Smith (1977) (dashed lines) and by the line spring model (full lines) for a plate with

a semi-eiliptical surface crack under in-plane shear loading ¥ . Modified equations (31), {50) and
(33) were used ; afh = 0.5 and 4.0, v = 0.25.

1. Br
F a/h = 0.8
L /h = 0.25
T p o= 1/3 PR
4
X s i ’ v
i ) i /’ \
\
8 o \ 8 ’ <] ‘|
\i - TRANSVERSE i - A 1
% } SHEAR ~§ P q
! r ’ t
0. i \ , !
——- Simon, 1 ° g ’ i
o Nikishkov, | 4 ?
i 1987 -
1 / ]
B ] -/
- 1
PREEPEEIT T W T S S SO S | PEEEPUIPEINT VI SV T S
o. .5 i. O-g. 5 1.
x2/a xz2/a

Fig. 8. Comparison of the normalized mode 1l and [ stress intensity factors k3 and &% given by

Simon et al. (1987) and Nikishkov and Atluri (1987) and the line spring model for a plate with a

semi-eHiptical surface crack under transverse shear loading V7. Original equations (31)-(33) were
used (see Fig. 9); u/h = 0.5, v=1/3.

the line spring model predicts the general trend of the more advanced methods and is also
comparable for transverse shear loading. The remaining results that are presented in this
paper are from the solution of the modified equations (31), (50) and (33).

Some sample results obtained from (70), (71) and (72) showing the stress intensity
factor distribution along the crack front fora/h =1, v=0.3 and L,/h=0.1, 0.3, 0.5,0.7
and 0.9 are given in Figs 10-15 (see Fig. | for notation). Figures 10-12 show the normalized
stress intensity factor for a crack with a rectangular profile, namely for L(x;) = Lq.
—a < x; < a (Fig. 1). The results shown in Figs 13-15 are for a semi-elliptic crack front
for which

L(xy) = Lo /1—=(xz/a)}, —a<x;<a. an

Each figure shows the secondary as well as the primary stress intensity factor. For example,
in Fig. 11 the plate containing a rectangular crack is under twisting moment M7 (Fig. 1).
Consequently, &} is the primary and &} is the secondary stress intensity factor. Also note
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Fig. 9. Comparison of the normalized mode 11 and III stress intensity factors k; and & given by

Simon er al. (1987) and Nikishkov and Atluri (1987) and the line spring model for a plate with a

semi-elliptical surface crack under transverse shear loading V' 7. Modified equations (31), (50) and
(33) were used:a/h = 0.5, v = 1/3.
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Fig. 10. The variation of normalized mode II and [I1 stress intensity fuctors along the crack front
in a plate containing a rectangular crack of depth Ly under in-plane shear loading N 7. Modified
equations (31), (50) and (33) were used ; a/h = 1, v = 0.3,

that for the rectangular crack the crack front is parallel to the x, axis, # = 0, and conse-
quently k5 = k, and kj = k,.

The similar problem of a surface crack in shells under mixed mode loading conditions
was considered in a recent study by Joseph and Erdogan (1988), where again Reissner’s
transverse shear theory was used. This formulation needs to be corrected by determining
the delta function behavior of the twisting kernel and subtracting it from the equation as
was done for this paper. Also (34) must be used to compensate for the crack front curvature.
With these two omissions, the results in that paper correspond to the results given by Table
3 and by the dashed lines of Fig. 3 in this paper.

As indicated before, unlike problems of plane elasticity, the stress intensity factors in
surface crack problems are dependent on Poisson’s ratio, v. The effect of v has been studied
in mode I problems and has been shown not to be very significant. For the three main
antisymmetric loading conditions (70)-(72) the influence of Poisson’s ratio on the
corresponding primary stress intensity factors is shown in Table 5. In these examples the
crack profile is assumed to be semi-elliptic and only the stress intensity factor at the
maximum penetration point of the crack is tabulated. Note that at this point for the loading
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Fig. 11. The variation of normalized mode II and I[II stress intensity factors along the crack front
in a plate containing a rectangular crack of depth L, under twisting moment M 3. Modified
equations (31). (50) and (33) were used; a/h = 1, v = 0.3.
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Fig. 12. The variation of normalized mode I and 11 stress intensity factors along the crack front

in a plate containing a rectangular crack of depth L, under transverse shear loading V. Modified
equations (31), (50) and (33) were used ; afh =1, v =0.3.

conditions considered the secondary stress intensity factors are zero. Even though for very
deep cracks under transverse shear loading the effect of v (varying between 0 and 0.5) on
k, may be as high as 33%, for the practical values of v and for most crack geometries the
influence of Poisson’s ratio is not expected to be significant.

5. CONCLUDING REMARKS

The line spring model, which is known to provide reasonably accurate results for mode I
surface crack problems in plates and shells, has been presented for the case of antisymmetric
loading conditions. The Reissner plate theory was used to formulate the plate problem.
This is the simplest plate theory in which all three of the unknown stress resultants,
namely in-plane shear (N,,), twisting (M,,), and transverse shear (V,), can be prescribed
individually on a given boundary. This allows for a systematic development of the model.

In the antisymmetric problem the mode II and III stress intensity factors are coupled
and their relative magnitudes along the crack front for a given loading condition depend
heavily on the crack front curvature. This requires transformation of the calculated stress
intensity factors k, and k; referred to the x,, x,, x; coordinate system into k3 and k% which



748 P. F. Joseru and F. ERDOGAN
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Fig. 13. The variation of normalized mode II and I1] stress intensity factors along the crack front
in a plate containing a semi-elliptic crack of semi-axes a and L, under in-plane shear loading N7;.
Modified equations (31), (50) and (33) were used; a/h = |, v = 0.3.
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Fig. 14. The variation of normalized mode Il and I stress intensity factors along the crack front
in a plate containing a semi-elliptic crack of semi-axes @ and L, under twisting moment M ;.
Modified equations (31), (50) and (33) were used ; afh = |, v =0.3.

arc referred to x|, x5 x3, where x} = x, x3 is tangent and x’ normal to the crack front
(Fig. ).

It was found that the line spring formulation given leads to a result that does not
recover the plane strain solution for large crack lengths, a limiting behavior that should be
inherent in the model. However, this shortcoming appears to be built into the “plate theory™
rather than being a consequence of the line spring approximation. The discrepancy can be
removed by subtracting the large a/h behavior of the twisting kernel, k,,, from itself for all
values of a/h. Therefore as a/h — oo, the integral term resulting from this kernel goes to
zero like all other integral terms in the integral equations and in the limit allows the solution
to approach the plane strain solution. The comparison of the results thus obtained with
existing numerical solutions is found to be quite good.
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Fig. 15. The variation of normalized mode 11 and II1 stress intensity factors along the crack front
in a plate containing a semi-elliptic crack of semi-axes @ and L, under transverse shear loading
VT . Modified equations (31). (50) and (33) were used ; a/h = 1, v = 0.3,

Table 5. The effect of Poisson’s ratio on the normalized stress intensity factor at the center of a semi-elliptical
crack subjected to out-of-plane shear, in-planc shear. and twisting loads. a/h = | {the modified equations (31),

(50). (33) were used]
In-planc shear, Twisting, Out-of-planc shear,
v maode 1L &k mode 1L &k /& o mode H, ky/k o
Lo/h 0.0 0.3 0.5 0.0 0.3 0.5 0.0 03 0.5
0.05 0.997 0.995 0,993 0.997 0.995 0.993 1.00 1.00 1.06
0.1 0.990 0.980 0.974 0.990 0.980 0973 1.00 1.00 L.00
02 0.961 0.912 0914 0.960 0.928 0.908 0.994 0.996 0.997
0.3 0917 0.869 0.841 0.909 0.852 0.819 0.974 0.982 0.987
04 0.860 0.799 0.764 0.832 0.753 0.707 0.936 0.954 0.966
0.5 0.790 0.723 0.687 0.718 0.617 0.562 0.879 0910 0.933
0.6 0.708 0.642 0.606 0.539 0.419 0.355 0.807 0.852 0.886
0.7 0.615 0.552 0.519 0.232 0.091 0.018 0.723 0.781 0.828
0.8 0.510 0.452 0422 —0.420 —0.588 -0.668 0.626 0.694 0.752
0.85 0.451 0.396 0.368 -113 -1.32 - |.40 0.570 0.642 0.704
09 0.386 0.334 0.308 -~2.75 -295 -3.03 0.505 0.578 0.644
095 0.307 0.260 0.237 ~9.03 -9.22 -9.21 0418 0.488 0.555
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